Biomass-derived Porous Carbonaceous Materials: Synthesis and Catalytic Applications

Alina M. Balu, Sudipta De, Jan C. Van der Waal, Rafael Luque
Departamento de Quimica Organica, Universidad de Cordoba
COST Action FP1306 «LIGNOVAL»

http://www.costfp1306.com/
ORGANISATION
COST Action FP1306

WG1
Pre-treatment/fractionation

WG2
Hemicellulose valorisation

WG3
Lignin valorisation

WG4
LCA & Techno-economic analysis
Furfural production

- Chemistry and mechanisms of formation and destruction
- Novel process concepts including downstream processes
- **Novel solid acid catalysts** with high hydrothermal stability!!!
Today’s industrial chemical products are largely based on oil & gas

- Background: biomass derived porous materials
- Starbons: new functional mesoporous carbons
- MAGBON: synthesis and applications
- Conclusions
BACKGROUND

THE INITIAL CONCEPT

Biomass Derived Polysaccharides

Novel Nano Porous Materials

Graphite-like materials
Microporous carbons
Mesoporous carbons

Temperatures of preparation

Carbonaceous materials
Charcoals

Mesoporosity $V_{\text{meso}}/V_{\text{total}}$

Starbons

ChemSocRev 2009, 38, 3401
ChemCatChem 2015, in press

TAKEN TO THE DESIGN OF ADVANCED FUNCTIONAL MATERIALS

ChemCatChem 2014;
ChemComm. 2015,
Mesoporous carbons from biomass: Starbons®

Hydrophobicity of starbons functional groups

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>100°C</td>
<td>Stable in aprotic solvents, alcohols, acetone.</td>
</tr>
<tr>
<td>150°C</td>
<td>Stable in boiling toluene.</td>
</tr>
<tr>
<td>170°C</td>
<td>Stable in boiling water.</td>
</tr>
<tr>
<td>220°C</td>
<td>Stable to acid and base solutions</td>
</tr>
<tr>
<td>300°C</td>
<td></td>
</tr>
<tr>
<td>450°C</td>
<td></td>
</tr>
<tr>
<td>600°C</td>
<td></td>
</tr>
<tr>
<td>700°C</td>
<td></td>
</tr>
</tbody>
</table>

My name is BON, MAGBON

Synthesis of catalysts

Carbonaceous Materials

- **Steps**
 - Gelatinization in water of starch and cooling 5°C
 - (140°C, 2 hours)
 - (overnight)

- **Solvent-exchange steps**

 - STARCH
 - Fe₃O₄-STARCH

Mesoporous carbons from biomass: Magbons®

ChemCatChem 2014
FORMATION OF A POROUS MAGNETIC GEL

1. Starch/H₂O; 140°C, 2 h

2. Cooling down; 5°C, 24 h

3. Addition of Fe₃O₄

PREPARATION OF THE MESOPOROUS MAGNETIC HYBRID

MAGSTAR
CONTROLLED CARBONISATION OF MAGSTAR AT 450°C

N₂ FLOW; 450°C, 2 h

MAGBON450

FUNCTIONALIZATION OF MAGBON450

H₂SO₄; 80°C, 4 h

MAGBON450-S
Synthesis of catalysts

Carbonization
(200-450°C, under N₂ flow)

MAGBON-200
MAGBON-450
Materials characterization

TEXTURAL PROPERTIES

<table>
<thead>
<tr>
<th>Materials</th>
<th>S_{BET} (m²/g)</th>
<th>Pore diameter (nm)</th>
<th>Pore Volume (mL/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porous STARCH</td>
<td>120</td>
<td>9.1</td>
<td>0.38</td>
</tr>
<tr>
<td>STARBON450</td>
<td>568</td>
<td>4.5</td>
<td>0.35</td>
</tr>
<tr>
<td>STARBON450-S</td>
<td>309</td>
<td>4.9</td>
<td>0.21</td>
</tr>
<tr>
<td>MAGSTAR</td>
<td>114</td>
<td>10.9</td>
<td>0.46</td>
</tr>
<tr>
<td>MAGBON450</td>
<td>248</td>
<td>5.0</td>
<td>0.32</td>
</tr>
<tr>
<td>MAGBON450-S</td>
<td>115</td>
<td>4.5</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Table 2. XPS analysis of the novel materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Atomic concentrations (%)</th>
<th>C1s HiRes components (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O 1s</td>
<td>C 1s</td>
</tr>
<tr>
<td>MAGBON450</td>
<td>21.5</td>
<td>66.8</td>
</tr>
<tr>
<td>MAGBON450-S</td>
<td>20.0</td>
<td>76.8</td>
</tr>
</tbody>
</table>

Correlation graph: C-C vs. O/C
(A-C) MAGBON450-S (D) STARBON450
Selective oxidation of benzyl alcohol

![Chemical reaction diagram](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Time (min)</th>
<th>Conversion (mol%)</th>
<th>Sel. Benzaldehyde (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blank (no catalyst)</td>
<td>60</td>
<td><10</td>
<td>>99</td>
</tr>
<tr>
<td>2</td>
<td>STARBON450</td>
<td>5</td>
<td><10</td>
<td>>99</td>
</tr>
<tr>
<td>3</td>
<td>STARBON450S</td>
<td>5</td>
<td><15</td>
<td>>99</td>
</tr>
<tr>
<td>4</td>
<td>MAGBON450</td>
<td>5</td>
<td>28</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>MAGBON450S</td>
<td>5</td>
<td>74</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>MAGBON450S</td>
<td>5</td>
<td>45<sup>a</sup></td>
<td>86</td>
</tr>
<tr>
<td>7</td>
<td>MAGBON450S</td>
<td>5</td>
<td>50<sup>b</sup></td>
<td>79</td>
</tr>
<tr>
<td>8</td>
<td>Fe/MCM-41<sup>[12]</sup></td>
<td>60</td>
<td>25</td>
<td>98</td>
</tr>
<tr>
<td>9</td>
<td>MW-Fe/Al-SBA-15<sup>[13]</sup></td>
<td>3</td>
<td>51</td>
<td>89</td>
</tr>
<tr>
<td>10</td>
<td>IMP-Fe/Al-SBA-15<sup>[13]</sup></td>
<td>5</td>
<td>42</td>
<td>95</td>
</tr>
</tbody>
</table>

Reaction conditions: 2 mmol benzyl alcohol, 0.3 mL H₂O₂ 50%, 0.05 g catalyst, 2 mL acetonitrile, 130 °C; ^a: H₂O₂ 33%; ^b100 °C, reaction temperature.

Balu et al. ChemCatChem 2014, accepted
Xylose (X) conversion to Furfural (F)

Reaction conditions:
23mg X, 3mL water, 23mg Catalyst, temperature monitored by FO

MAGBON-SO$_3$H

Microwave irradiation Monowave 300

Goal of this research:
Kinetic study of Xylose conversion to Furfural

F YIELD: 20-50%

Diagram showing the conversion of Xylose (X) to Furfural (F) using MAGBON-SO$_3$H under microwave irradiation. The yield of Furfural is indicated as 20-50%. The reaction conditions include 23mg of Xylose, 3mL of water, 23mg of Catalyst, and temperature monitored by FO.
Acknowledgments

COST Action FP1306: http://www.costfp1306.com/

COST is supported by the EU Framework Programme Horizon 2020
THANK YOU FOR YOUR ATTENTION!